Congenital Heart Disease for the Adult Sonographer: How Do I …

Image with Segmental Analysis

Robert W. McDonald, RCS, RDCS, FASE
Doernbecher Children’s Hospital
Portland, Oregon
Lesson Objectives:

The participant will be able to:

- Improve patient care through segmental approach.
- Improve sonographer/MD communication.
- Improve efficiency in congenital heart disease echo exam.
- Increase congenital heart disease awareness amongst all sonographers.
- Assure complete classification of cardiovascular morphology and physiology in any patient with congenital heart disease.
Why is using a segmental approach important?

- More and more children with congenital heart disease are reaching adulthood; palliated, repaired and un-repaired.
- Necessary in order to describe, visualize, document and communicate findings adequately.
- Increases understanding of structural, hemodynamic, and functional aspects of congenital heart disease.
- Improves patient care.
What is it?

• A methodical description of the anatomical and hemodynamic inter-relationship of cardiac structure, function and physiology.

How is it applied?

• Utilize multiple echo planes to visualize all cardiac structures and related viscera.
Who can do it?
• All sonographers and physicians.

When is a segmental approach necessary?
• Anytime a patient with complex or substantial congenital heart disease lesions is being evaluated by echo.
• Anytime when a standard approach is confusing due to abnormal and/or complex structural or surgical anatomy.
Transthoracic technique

- If parasternal images are bizarre or confusing, move to the apical or subcostal views.
- If known complex congenital heart disease exists, start from either the apical or subcostal view.
- Pay special attention to proper transducer orientation.
- Utilize all available echo windows.
Congenital Heart Disease for the Adult Sonographer: How Do I …

Image with Segmental Analysis

Back to the Basics

• Cardiac anatomy
• How the blood flows
Determination of cardiac location and situs

- Two major organ groups
 - The abdominal viscera
 - positions of liver, stomach, spleen, and abdominal great vessels (aorta and inferior vena cava)
 - The atria (cardiac situs)
 - Arrangement of the atria

- Three possible positions of the organ groups
 - Solitus – normal position
 - Inversus – mirror image of normal
 - Ambiguous – complex, spatial arrangement of the organs
Abdominal situs

• Situs Solitus
 – Normal arrangements
 – Left stomach, left spleen, right liver, right tri-lobed lung

• Situs Inversus
 – Inverted arrangements
 – Right stomach, right spleen, left liver, left tri-lobed lung
Abdominal situs

- **Left Atrial Isomerism (Polysplenia)**
 - Bilateral left-sidedness
 - Multiple spleens, often interrupted IVC.

- **Right Atrial Isomerism (Asplenia)**
 - Bilateral right-sidedness
 - No spleen
 - Often PS/PA, dextrocardia, AVC defect, TAPVC, no coronary sinus.
Cardiac Location

- **Cardiac Position**
 - Levoposition
 - Mesoposition
 - Dextroposition

- **Cardiac Orientation**
 - Levocardia
 - Mesocardia
 - Dextrocardia
• Venous segment
 • Veno-atrial connection
• Atrial segment
 • Atrioventricular connection
• Ventricular segment
 • Ventricular-great arterial connection
• Great arterial segment
Venous Segment

- **Systemic veins**
 - Inferior vena cava
 - Superior vena cava
 - Coronary sinus
 - Hepatic veins

- **Pulmonary veins**
 - Right upper and lower veins
 - Left upper and lower veins
Atrial Segment

- **Right Atrium**
 - Large pyramidal appendage
 - Terminal crest
 - (crista terminalis)
 - Pectinate muscles
 - Receives caval veins and coronary sinus
 - Variable feature

- **Left Atrium**
 - Small fingerlike appendage
 - No pectinate muscles
 - Receives pulmonary veins
 - Variable feature
Atrioventricular Valves

- **Tricuspid Valve**
 - Low septal annular attachment
 - Septal cordal attachments
 - Triangular orifice
 - (mid-leaflet level)
 - Three leaflets and commissures
 - Three papillary muscles
 - Empties into right ventricle
Atrioventricular Valves

- Mitral Valve
 - High septal annular attachment
 - No septal cordal attachments
 - Elliptical orifice
 - (mid-leaflet level)
 - Two leaflets and commissures
 - Two large papillary muscles
 - Empties into left ventricle
Atrioventricular Connection
- Concordant
- Discordant
- Ambiguous
- Double inlet
 - Univentricular
- Single inlet
 - Atresia
- Common
Atrioventricular Connection

- AV valves follow the ventricle
- Can be right and left straddling, overriding
- Functional assessment
 - Normal
 - Regurgitation
 - Hypoplasia (atresia)
 - Obstruction/Stenosis
Ventricular Segment

• Right Ventricle
 – Tricuspid-pulmonary discontinuity
 – Muscular outflow tract
 – Septal and parietal bands
 – Large apical trabeculations
 – Coarse septal surface
 – Crescentic in cross-sections
 – Thin free wall
 – Receives tricuspid valve
Ventricular Segment

- **Left Ventricle**
 - Mitral-aortic continuity
 - Muscular-valvular outflow tract
 - No septal or parietal band
 - Small apical trabeculations
 - Smooth upper septal surface
 - Circular in cross-section
 - Thick free wall
 - Receives mitral valve
Semilunar Valves

- **Aortic Valve**
 - Tri-leaflet valve
 - Empties into the ascending aorta
 - Coronary arteries

- **Pulmonary Valve**
 - Tri-leaflet valve
 - Empties into the pulmonary trunk
Ventriculoarterial Connection
- Describes the junction of ventricular outflow into the great arteries
 - Concordant
 - Discordant
 - Double outlet
 - Single outlet
 - Common outlet
Ventriculoarterial Connection

- 50% rule
- Fibrous continuity
- Visualize the amount of override
- Evaluate outlet orientation to each other and ventricle
Great Arterial Segment

- Solitus
- Side-by-side
- Transposed
 - refers to abnormal relation of the great arteries to each other
 - d-looped
 - l-looped
 - Anterior
Great Arterial Segment
- Describes the presence, absence, origin, size, position and anatomic deformities

• Aorta
 - Ascending aorta
 - Aortic arch
 • Brachiocephalic
 • Left common carotid
 • Left subclavian
 - Descending aorta

• Pulmonary Artery
 - Main and branch pulmonary arteries
 - Ductus arteriosus
Blood Flow

• Describe the blood flow into and out of the heart in a methodical manner.
Summary

• Segmental approach provides a framework that can support the understanding of any congenital heart defect.

• Can help the sonographer and physician define anatomy in simple terms, using segments and connections.
 – Use descriptive terms what you can identify and state what you cannot.

• Guides the sonographer in obtaining all echocardiographic images to better understand congenital heart disease.

• Improves patient care.
References

Web References

- Anderson RH, Cook AC, Shirali GS. Atrioventricular septal malalignment.
 www.acc.org/community/pediatric/opinion_apr03.htm.
- www.user.gru.net/clawrence/vccl/chpt1/fetal.HTM
- www.pediheart.org/practitioners/anatomy/ventricles.htm
- http://www.med.mun.ca/anatomyts/first/heart1.html